
Multi-Head Attention Machine Learning for Fault Classification in
Mixed Autonomous and Human-Driven Vehicle Platoons

Theodore Wu Satvick Acharya Abdelrahman Khalil Ahmad F. Aljanaideh
Mohammad Al Janaideh Deepa Kundur

Abstract— Connected Autonomous Vehicle (CAV) platoons
have been extensively studied to protect against cyber and
physical vulnerabilities. Faults can occur in all layers of the
platoon system or could be introduced by impaired human
drivers. Since different types of faults may require different
fault resolution methods, identifying the fault class facilitates
the selection of the best mitigation strategy. This paper in-
troduces a Multi-Head Attention Machine Learning (MHA-
ML) approach to classify a set of five different faults and
abnormalities in mixed autonomous and human-driven vehicle
platoons. Autonomous vehicles can face actuator faults, False
Data Injection (FDI) attacks, and Denial-of-Service (DoS) at-
tacks, while abnormalities such as drunk or distracted human
drivers could occur. MHA-ML is developed to identify faulty
vehicle behavior over long sequences of sensor measurements.
MHA-ML is trained on a mixed platoon simulation model
and then tested on mobile laboratory robots. The experiment
classifies the five fault categories with 90% accuracy and
outperforms a baseline recurrent neural network approach.

I. INTRODUCTION

Considered the new generation of autonomous vehicles,
the Connected Autonomous Vehicle (CAV) platoon is an
emerging cyber-physical technology that integrates self-
driving vehicles with wireless communication networks.
This integration allows vehicles to communicate with their
surroundings, which allows for a higher level of vehicle
awareness and supervision. However, CAV platoons are open
for any vehicle on different levels of autonomy to join
[1], [2] and possess a wide range of physical and cyber-
communication components, as illustrated in Figure 1. This
renders CAV platoons highly vulnerable to a wide range
of physical and cyber faults, as well as malicious cyber-
attacks. Moreover, current autonomous vehicles and human-
driven vehicles are not supplied with adequate technology
to communicate with CAVs [3], [4]. As CAV platoons enter
the market, platoons will be forced to coexist alongside such
vehicles, which presents an additional challenge since coop-
eration with noncommunicating vehicles is impossible and
unpredictable human driver behavior can resemble fault-like
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Fig. 1: An illustration of an impaired driver joining a faulty
CAV platoon.

sensor signals [5]. The fault and risk range in CAV platoons
becomes wider and more severe when impaired drivers, such
as intoxicated or distracted drivers, are introduced within
the platoon. With many scenarios in which faults can occur,
the real-world viability of CAV platoons hinges on whether
safety and stability within the platoon can be ensured.

Different risk mitigation techniques were introduced in the
literature to enhance CAV safety and security, as will be
further discussed in Section II. The literature survey showed
that mitigating these faults, attacks, and abnormalities due
to either CAV issues or uncooperative vehicles (i.e., human-
driven) is faster and more reliable if the issue class is known
[6], [7]. For example, if a communication channel is jammed
or attacked, the risk can be mitigated by switching to a
backup communication channel. While extensive research
has been conducted to detect such faults and abnormalities, it
remains challenging to distinguish the specific fault class that
occurred. Further, most fault and risk mitigation techniques
are only designed to mitigate a specific fault or abnormality
class. Thus, there is an apparent need for a fault classification
mechanism to bridge the gap between fault detection and the
selection of the appropriate risk mitigation technique.

In this paper, we propose a method for classifying the
fault and abnormalities class using Multi-Head Attention
Machine Learning (MHA-ML). MHA-ML is able to augment
the awareness of the machine learning network by recog-
nizing long-range dependencies in the input sequence and
learning to pay more attention to relevant information [8].
The proposed technique only uses a sequence of platoon
velocities as inputs to the classifier and is thus insensitive to
the platoon model dynamics. We investigate five major faults
and abnormalities classes in CAV platoons: (i) Actuator fault,
(ii) False Data Injection (FDI), (iii) Denial-of-Service (DoS),
(iv) Drunken drivers, and (v) Distracted drivers. These were
selected for their full coverage of physical faults, cyber-
communication attacks, and human driver abnormalities.



II. RELATED WORK

The pairing of fault detection with fault mitigation tech-
niques is a recent trend in improving CAV safety [9]. Typical
methods are analytical or software-based and aim to restore
normal system behavior after abnormal behavior is induced
by a specific target fault class. In [10], a reliable observer-
based detector was used to detect and mitigate actuator and
sensor faults. However, no algorithm was given to distinguish
the fault characteristics nor whether the sensor attack severity
lies within the bendable range. In [11], a novel distributed
observer is proposed to achieve consensus among estimated
agent states when a disturbance occurs, although the specific
type of disturbance is not identified. The authors of [12]
combined machine learning techniques with a Kalman filter
to detect faults in CAV platoons but are unable to distinguish
which subsystem causes the fault. In [13], DoS attacks
were detected and estimated using sliding mode observers,
although the identification of the attack as a DoS was known
a priori. The authors of [14] similarly assumed a known
fault class and designed an adaptive synchronization-based
control algorithm for communication time delays and FDI.
For actuator faults, [15], [16] and [17] follow similar trends.

Many of the existing fault mitigation techniques are de-
veloped for specific fault classes but may not generalize to
additional fault types. On the other hand, fault detection
methods can flag many types of abnormal system behavior
but do not often localize the source of the fault [9]. This
motivates the need for a fault classification mechanism –
a critical task in the fault management process for cyber-
physical systems [18] – that allows the detection system to
select appropriate mitigation methods. However, there is a
gap in the CAV literature on such classification methods.

Fault classification has been explored in other systems
with limited fault range and severity. In [19], [20], CNN and
LSTM approaches were used to classify faulty transmissions
and cyberattacks in autonomous and internet-connected ve-
hicles. However, CNNs showed poor feature localization and
LSTMs showed difficulties representing long sequence data
as a single vector. In [21], multinomial logistic regression
was used to categorize bearing faults. In [22], an SVM was
used to distinguish between normal and six faulty sensor
behavior types, although signal data needed to be carefully
preprocessed to extract useful features for the classifier. Other
methods such as random forest classifiers and XGBoost were
used in [23], [24], but the quantity of decision trees slows
down real-time predictions in practice. A fault classification
algorithm that can quickly process large amounts of sensor
data and distinguish a wide range of faults and abnormalities
has yet to be developed for the CAV domain.

Machine learning is commonly used in fault classification
for its ability to extract patterns from large amounts of histor-
ical data. The concept of attention is particularly promising,
as it allows neural networks to prioritize specific timesteps
of sequential data, such as that emitted by CAV sensors,
in their decision-making. A CNN with multi-head attention
is used in [25] to perform fault classification in industrial

systems. The network uses convolutional layer features as
the attention mechanism inputs and uses a softmax function
to generate fault probabilities. Self-attention is used in [26]–
[28] and is shown to consistently improve accuracy while
enabling parallel processing of sequence data. The multi-
head attention CNN technique in [29] improved accuracy,
feature extraction and feature selection for human activity
recognition. In the context of autonomous vehicles, [30]–[32]
have examined the use of attention for autonomous vehicle
motion forecasting and trajectory prediction.

III. HEALTHY PLATOON MODEL

Although the proposed technique does not require knowl-
edge of platoon dynamics, a simulation model is required
to generate training data. This paper considers the platoon
longitudinal drive only. The lateral drive is kept for future
work. This section considers the healthy conditions of the
platoon, whereas Section IV modifies the healthy model with
the five fault classes considered in this work.

A. CAV Model

We model the longitudinal drive of CAVs as brushless
electric vehicles with an internal PI controller representing
the cruise control law. Following [33], the CAV model is
given by the following transfer function

Vi(s)

V ∗
i (s)

=
δis+ ϵi

s3 + αis2 + βis+ γi
, (1)

where for both first and third vehicles i ∈ {1, 3}, Vi is the
velocity of the ith vehicle in the frequency domain, and V ∗

i

is the desired velocity of the ith vehicle in the frequency
domain. This model was constructed in [33] using the bond
graph approach to create more realistic characteristics. The
model parameters are configured for the first and third vehi-
cles i ∈ {1, 3} as αi = 72.01, βi = 117.9, γi = ϵi = 46.72,
and δi = 28.03.

B. Human-driven

For the second vehicle, we adopt the human Intelligent
Driver Model (IDM) in [34] as an example of healthy driver
behavior. The healthy IDM model is given by

a2(t, v2) = amax

[
1−

(
v2(t)

v∗2(t)

)λ

−
(
s∗2(t, v2)

s2(t)

)2
]
, (2)

where a2 is the acceleration of the human-driven vehicle
(second vehicle in the platoon), amax = 1m/s2 is the

CAVCAV Human
Driven

Fig. 2: Three vehicles mixed CAV and human-driven vehicle
platoon. The first and third vehicles are CAVs, while the
second vehicle is human-driven.
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Fig. 3: Healthy response of the three vehicles platoon in
Figure 2, where the first and third vehicles are CAVs and
the second is human-driven. Note that human drivers have a
slower response than CAVs.

maximum acceleration, v2 and v∗2 are the measured and
desired velocities of the second vehicle, respectively. λ is
a constant that controls the human response speed. For a
healthy human driver, the response constant is set to λ = 8.
s2 is the actual spacing distance between the first and second
vehicles, and s∗2 is the desired spacing distance given by

s∗2(t, v2) = s0 +max

(
0, v2(t)T +

v2(t)∆v2(t)

2
√
b∗a∗

)
, (3)

where s0 = 2m is the minimum spacing distance, T = 1.5s
is the desired time headway to the next vehicle, ∆v2(t) =
v2(t)−v1(t), a∗ = 1m/s2 is the maximum acceleration, and
b∗ = 3m/s2 is the comfortable braking deceleration.

Figure 3 shows the healthy response of the platoon in
Figure 2. The platoon was constructed such that the first and
third vehicles follow the model in (1), and the second vehicle
follows the model (2)-(3). The second vehicle follows the
velocity of the first vehicle, while the third vehicle follows
the velocity average of the first two vehicles as a simple
approach to establish platoon velocity consensus when faults
are possible [35]. Note that the human driver has a slower
response by nature compared with CAVs.

IV. FAULT MODELS

This section alters the healthy platoon model introduced
in Section III with the five fault classes investigated in this
paper. Only one fault is assumed to occur at the same time.
We leave the case of multiple faults for future work.

A. CAV Faults

1) Actuator Fault: We consider a loss of effectiveness
fault in the third vehicle’s motor. This fault occurs via
severe operating conditions of the vehicle’s brushless motor,
including high magnetic force and different weather condi-
tions [36]. The loss of effectiveness fault results in a lower
response amplitude. Therefore, we drop the transfer function
amplitude by altering the parameter ϵ3 = 41 in the CAV
model in (1), which lowers the actuator effectiveness to
almost 80%.

2) FDI Attack: FDI attacks refer to falsifying the informa-
tion transmitted through communication channels [14]. We
model this fault as noise injected in the first vehicle’s velocity
that is received by the third vehicle. That is, the first vehicle’s

velocity remains healthy, but the velocity used in controlling
the third vehicle is altered as ṽ1(t) = v1(t)+ηFDI(t), where
ṽ1 is the velocity of the first vehicle received by the third
vehicle, and ηFDI is injected bounded white noise.

3) DoS Attack: DoS attacks occur when the communica-
tion channel is kept busy, which results in the information
being transmitted late [14]. We model this fault as a time-
variant communication delay in the velocity of the first
vehicle that is received by the third vehicle under a no
packet loss assumption. We alter the velocity of the first
vehicle as ṽ1(t) = v1(t − τdelay(t)), where τdelay is a
normally distributed variable time delay that captures the
communication latency.

B. Impaired Drivers

1) Distracted Drivers: The main feature of distracted
drivers is their delayed response to stimuli [37]. Distracted
drivers are less severe than drunk drivers but are much more
common on real-world roadways. We model this abnormality
as a delay in both the response λ = 5 as well as in tracking
the velocity of the front vehicle v∗2(t) = v∗2(t−τdistracted(t)),
where τdistracted(t) is a normally distributed variable time
delay that captures the delay in tracking the front vehicle.

2) Drunk Drivers: Following the report published in [38],
a moderately drunk driver has the effects of (i) decline in
visual perception, (ii) reduced coordination, (iii) increased
latency in tracking moving objects, and (iv) decline in ability
to multitask and respond to emergencies. We model these
effects as (i) s̃∗2(t) = s∗2(t)+ηs∗(t), (ii) s̃2(t) = s2(t)+ηs(t),
(iii) ṽ1(t) = v1(t− τdrunk), and (iv) λ = 3, where s̃∗2, s̃2, ṽ1
refer to the corrupted desired spacing distance, actual spacing
distance, and first vehicle’s velocity, respectively. ηs∗ , ηs are
bounded white noise and τdrunk = 2s captures the constant
time delay in tracking the front vehicle.

Figure 4 shows the healthy platoon responses from Section
III after altering them with the faults and abnormalities
introduced in Section IV. Figure 4a shows the third vehicle’s
response after altering it with the three CAV faults, and
Figure 4b shows the human driver vehicle’s velocity after
altering it with the two abnormalities.

V. MULTI-HEAD ATTENTION

In this paper, we implement Multi-Head Attention Ma-
chine Learning (MHA-ML) [8] given its established success
for long sequence processing. At its core, MHA-ML consists
of a stack of parallel computations of scaled dot-product at-
tention. Each attention computation results in an independent
output encoding that is then aggregated across stacks.

For the discrete-time sample k ∈ {0, . . . , n}, where n is
the total number of samples, let the platoon velocities be
collected in the vector v(k) =

[
v1(k) v2(k) v3(k)

]
.

The goal is to identify the fault class using platoon veloci-
ties only. MHA-ML uses the concept of scaled-dot-product
attention, with the function given by

A(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (4)
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Fig. 4: Visualization of faulty vehicle responses under each
fault class. (a) Third vehicle response v3 in Figure 3 after
emulating the CAV faults introduced in Section IV-A, and
(b) Second vehicle velocity v2 in Figure 3 after emulating
the impaired driver effects introduced in Section IV-B. Non-
faulting vehicles are omitted for visualization clarity.

where Q ∈ Rn×dk represents an arbitrary query, K ∈
Rn×dk represents an arbitrary key, and V ∈ Rn×dv rep-
resents an arbitrary value. Q,K, V are matrices that cor-
respond to different projections of a common input matrix
X =

[
T (v(0)) . . . T (v(n))

]T ∈ Rn×dmodel , with
T (v(i)) = v(i)WE + p(i) being the transformation per-
formed on the platoon velocities for time i. WE ∈ R3×dmodel

denotes a weight matrix mapping the platoon velocities to the
model hidden size and p(i) ∈ Rdmodel is a sinusoidal signal
with element j ∈ {1 . . . dmodel} of the vector defined as

p(i)j =

{
sin ( i

10000

2j/dmodel
) when j is even,

cos ( i
10000

2j/dmodel
) when j is odd.

(5)

Since Q,K, V are projections of X , we have Q =
XWQ, K = XWK , and V = XWV , where WQ ∈
Rdmodel×dk ,WK ∈ Rdmodel×dk ,WV ∈ Rdmodel×dv are differ-
ent weight matrices. The scalars dk and dv denote the key
and value projection sizes, respectively. dmodel denotes the
hidden size of the MHA-ML model. We consider dmodel, dk
and dv to be architectural hyperparameters that can be tuned
to control the size of the MHA-ML model.

We can also interpret Q,K, V as a stack of query, key,
and value vectors for different sequence steps k ∈ {0 . . . n}.
Under this paradigm, the softmax function used in (4) com-
putes a set of attention probabilities over the entire time step
sequence by comparing the dot-product similarity between
each pair of query and key vectors in Q and K. These
probabilities are used to assign weights to value vectors at
corresponding time steps in V , where the vectors at time
steps with higher probability are more significant to the
MHA-ML model.

The concept of multi-head attention extends scaled-dot-
product attention by computing parallel stacks of scaled dot-
product attention with different Q,K, V matrices for each
head. Each attention head computes an independent output,
where all outputs are then concatenated and transformed
linearly to restore the model dimension dmodel. This feature
provides the model with additional flexibility to prioritize
different elements of the input sequence depending on the
Q,K, V projections learned by each head.

The proposed network architecture is shown in Figure
5. We first map the velocity measurements for each time-
step v(1) . . . v(k) to a higher-dimensionality representation
through a velocity embedding layer. We implement this
embedding as a single fully-connected layer. Note that the
velocity embedding size is synonymous with the hidden size
of the MHA-ML model, dmodel. Next, the sinusoidal signal
in (5) is summed with the velocity embeddings to inject
sequential information, as introduced in [8]. This sinusoidal
signal allows the model to learn the progression of the input
sequence. The inclusion of this sinusoidal is necessary since
MHA-ML avoids slow sequential processing by removing
recurrent neural networks (RNNs) from the architecture. The
sinusoid-augmented velocity embeddings are then passed to a
multi-head attention layer and residual block. The attention
layer identifies the most important time steps of the input
sequence, while the residual connection helps with model
stability and preserves information from the attention layer
input. A feedforward network further transforms the attention
layer’s output. Specifics on the residual connections and
feedforward network are given in [8].

We then apply average pooling across the time dimen-
sion of the feedforward network’s output state to extract a
sequence length-independent representation. Finally, a fully
connected layer with a softmax output function is applied
to calculate fault class probabilities. The model proposes the
fault class with the highest predicted probability as the fault
associated with the input velocity signal.

VI. MODEL TRAINING

In this section, we introduce our data generation process,
our preprocessing techniques, and our model parameter op-
timization process.

A. Data Generation

To train the machine learning network, the platoon model
in Section III was constructed and each fault or abnormality
in Section IV was implemented individually in a separate
run. The desired velocity of the platoon was set to change
randomly every 30 seconds. 5000 runs were recorded, with
1000 runs per fault or abnormality class. Each run is 500
seconds long with a sampling time of 1 second. The three
vehicles’ velocities were recorded in each run.

B. Data Preprocessing

The data was normalized prior to training to improve
stability of the training process. We applied min-max normal-
ization to re-scale each data sample to the range [−1, 1]. For
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Fig. 5: Proposed multi-head attention network architecture for CAV platoon fault classification.

all k ∈ {0, . . . , n}, the scaled velocity of vehicle i ∈ {1, 2, 3}
is given by

v̄i(k) = 2

(
vi(k)− |vi|min

|vi|max − |vi|min

)
− 1, (6)

where v̄i is the scaled velocity of vehicle i, and
|vi|max, |vi|min are the upper and lower bounds of the
complete training dataset of the velocity signal vi. The min-
max normalization was used rather than zero-mean feature
standardization since mapping to a single mean and variance
would misrepresent the platoon’s dynamics.

C. Network Optimization

We randomly selected 80% of the simulation data to use
as a training dataset and isolated the remaining 20% to use as
a validation dataset. The network parameters are tuned using
a cross-entropy loss function and Adam optimization [39].
We used a batch size of 100 and maintained default hyperpa-
rameter values for the optimizer. The network is trained for
150 epochs with early stopping if the validation loss does
not decrease for 10 consecutive epochs. A random search
was conducted over 20 combinations of model architecture
sizes to optimize the network structure. Values were selected
from: {8, 16, 32, 64} for dmodel, the velocity embedding size;
{16, 32, 64, 128, 256} for dk, the key projection size; 1-8
attention heads; and {16, 32, 64} for the feedforward hidden
size. We constrained the range of the parameter values to
reduce model overfitting and further reduced the search
complexity by setting dv = dk. The combination with the
lowest validation loss was taken as the final model, which
uses dmodel = 64, dv = dk = 256, 3 attention heads, and
a feedforward hidden size of 64. The cross-entropy loss and
the model’s accuracy on the training and validation datasets
are shown in Figure 6. The final model achieved a validation
loss of 0.978 and a validation accuracy of 92.4%.

VII. EXPERIMENTAL RESULTS

Given the ideal nature of the simulation data, we further
validate our approach by leveraging real-world data collected
from a physical CAV platoon. In this section, we will
introduce our experimental testing setup, outline our data
collection process, and discuss our testing results.

A. Experimental Setup

The proposed approach was tested on a platoon of three
laboratory mobile robots, shown in Figure 7. Similar to the
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Fig. 6: Cross-entropy loss and accuracy on the training and
validation datasets created with simulation data.

#1
CAV

#2
Human
driven

#3
CAV

Fig. 7: The experimental setup consists of three differential
robots. The first and third robots are autonomous, while the
second is keyboard-controlled to emulate a human-driven
vehicle.

platoon formulation in Figure 2, the first and third robots
are autonomous with a communication link between them
and the second robot is human-driven through the computer
keyboard. The robots used are Quanser Qbot 2e robots,
which are differential mobile robots with the ability to
communicate with each other. Each Qbot consists of two
wheels, each driven by a DC motor. Both wheels were set
to the same velocity, so the platoon only had longitudinal
motion. The platoon’s desired velocity was sent to the first
robot, and an internal PI controller (cruise control) was used
to track it. The second robot is driven by the human to follow
the first robot, and the third robot has another internal PI
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Fig. 8: An example of the emulated faults on the experimen-
tal setup.

controller to track the average velocity of the first two robots.

B. Data Collection

The internal PI controllers were tuned such that the robots
have a scaled settling time of 0.1 of the simulated CAVs.
Thus, each run was 50 seconds long with a 0.1 second
sampling time. That is, the velocity sequence length of both
the simulations and experiments match. On the same scale
of 0.1, the desired velocity of the robots was set to change
randomly every 3 seconds. A testing dataset of 50 runs was
recorded, where every 10 runs correspond to a different fault
or abnormality class. A low pass filter was used to filter the
velocity measurements. Figure 8 shows an example of the
filtered laboratory robot responses with the five fault and
abnormality classes. The CAV faults introduced in Section
IV were modelled directly in the robot’s interface, while the
human driver faults were approximated by introducing input
delays as specified by the human driver abnormality models.

C. Testing Results

The trained MHA-ML network was tested on the collected
data from the experimental setup. The model achieved a
success rate of 90%, with the predictions shown in Figure 9a.
From the misclassified samples, we observed that the most
significant sources of error were the misprediction of the FDI
and DoS fault classes. It can be observed from Figure 8 that
these two faults result in very similar responses.

D. Results Comparison

For sequence classification problems, RNNs are frequently
leveraged as a powerful deep learning technique. An example
on sensor data is given in [40]. We trained a deep RNN
as a baseline model to compare with the proposed MHA-
ML approach. The model leverages an equivalent velocity
embedding layer but replaces the attention network with a
bidirectional Long Short-Term Memory (LSTM) cell. The
final outputs of the forward and backward LSTM are con-
catenated to form a feature vector and mapped to fault class
probabilities via a fully-connected layer and softmax output
function. The trained RNN baseline was tested with the same
experimental test dataset and achieved 78% classification
accuracy. Figure 9b shows the distribution of the baseline
model’s predictions. We conclude that the model easily
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Fig. 9: Comparison between MHA-ML and RNN: (a) Con-
fusion matrix visualization of test data predictions by the
MHA-ML and (b) Confusion matrix visualization of test data
predictions by the RNN baseline model.

predicts the actuator and drunk classes, but overpredicts the
FDI class. We note that the baseline struggles with the DoS
class especially, misclassifying all samples as FDI faults.

VIII. CONCLUSION

This paper proposes multi-head attention machine learning
to classify faults and abnormalities in mixed autonomous
and human-driven vehicle platoons. Three CAV fault classes
– (i) Actuator fault, (ii) FDI, and (iii) DoS – and two
human driver abnormalities – (i) Distracted drivers, and (ii)
Drunk drivers – are considered. We constructed a simulation
model of a healthy platoon and altered it with the five fault
and abnormality classes. The simulation model was used to
generate the training dataset, on which the model achieved an
accuracy of 92.4%. We conducted a laboratory experiment
on three differential mobile robots, on which the trained
model achieved an accuracy of 90%. For comparison, a
baseline deep RNN model was trained and tested on the same
datasets. The baseline RNN achieved only a 78% success rate
on the same experimental dataset. The experiment showed
that our approach, which classifies faults based on velocity
measurements alone, generalizes to scenarios where the
model dynamics are unknown and thus shows applicability
to real-world CAV platoon environments.
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